890 research outputs found

    Measuring the Polarization of Boosted Hadronic Tops

    Full text link
    We propose a new technique for measuring the polarization of hadronically decaying boosted top quarks. In particular, we apply a subjet-based technique to events where the decay products of the top are clustered within a single jet. The technique requires neither b-tagging nor W-reconstruction, and does not rely on assumptions about either the top production mechanism or the sources of missing energy in the event. We include results for various new physics scenarios made with different Monte Carlo generators to demonstrate the robustness of the technique.Comment: v2: version accepted for publication in JHE

    Diboson-Jets and the Search for Resonant Zh Production

    Full text link
    New particles at the TeV-scale may have sizeable decay rates into boosted Higgs bosons or other heavy scalars. Here, we investigate the possibility of identifying such processes when the Higgs/scalar subsequently decays into a pair of W bosons, constituting a highly distinctive "diboson-jet." These can appear as a simple dilepton (plus MET) configuration, as a two-prong jet with an embedded lepton, or as a four-prong jet. We study jet substructure methods to discriminate these objects from their dominant backgrounds. We then demonstrate the use of these techniques in the search for a heavy spin-one Z' boson, such as may arise from strong dynamics or an extended gauge sector, utilizing the decay chain Z' -> Zh -> Z(WW^(*)). We find that modes with multiple boosted hadronic Zs and Ws tend to offer the best prospects for the highest accessible masses. For 100/fb luminosity at the 14 TeV LHC, Z' decays into a standard 125 GeV Higgs can be observed with 5-sigma significance for masses of 1.5-2.5 TeV for a range of models. For a 200 GeV Higgs (requiring nonstandard couplings, such as fermiophobic), the reach may improve to up to 2.5-3.0 TeV.Comment: 23 pages plus appendices, 9 figure

    Non-global logarithms and jet algorithms in high-pT jet shapes

    Get PDF
    We consider jet-shape observables of the type proposed recently, where the shapes of one or more high-pT jets, produced in a multi-jet event with definite jet multiplicity, may be measured leaving other jets in the event unmeasured. We point out the structure of the full next-to-leading logarithmic resummation specifically including resummation of non-global logarithms in the leading-Nc limit and emphasising their properties. We also point out differences between jet algorithms in the context of soft gluon resummation for such observables.Comment: 22 pages, 4 figures. Title and a few words changed. Several typos corrected. Version accepted by JHE

    Explaining the t tbar forward-backward asymmetry without dijet or flavor anomalies

    Full text link
    We consider new physics explanations of the anomaly in the top quark forward-backward asymmetry measured at the Tevatron, in the context of flavor conserving models. The recently measured LHC dijet distributions strongly constrain many otherwise viable models. A new scalar particle in the antitriplet representation of flavor and color can fit the t tbar asymmetry and cross section data at the Tevatron and avoid both low- and high-energy bounds from flavor physics and the LHC. An s-channel resonance in uc to uc scattering at the LHC is predicted to be not far from the current sensitivity. This model also predicts rich top quark physics for the early LHC from decays of the new scalar particles. Single production gives t tbar j signatures with high transverse momentum jet, pair production leads to t tbar j j and 4 jet final states.Comment: 7 pages, 6 figures; v2: notation clarified, references adde

    Bilateral Assessment of Functional Tasks for Robot-assisted Therapy Applications

    Get PDF
    This article presents a novel evaluation system along with methods to evaluate bilateral coordination of arm function on activities of daily living tasks before and after robot-assisted therapy. An affordable bilateral assessment system (BiAS) consisting of two mini-passive measuring units modeled as three degree of freedom robots is described. The process for evaluating functional tasks using the BiAS is presented and we demonstrate its ability to measure wrist kinematic trajectories. Three metrics, phase difference, movement overlap, and task completion time, are used to evaluate the BiAS system on a bilateral symmetric (bi-drink) and a bilateral asymmetric (bi-pour) functional task. Wrist position and velocity trajectories are evaluated using these metrics to provide insight into temporal and spatial bilateral deficits after stroke. The BiAS system quantified movements of the wrists during functional tasks and detected differences in impaired and unimpaired arm movements. Case studies showed that stroke patients compared to healthy subjects move slower and are less likely to use their arm simultaneously even when the functional task requires simultaneous movement. After robot-assisted therapy, interlimb coordination spatial deficits moved toward normal coordination on functional tasks

    Light hadron, Charmonium(-like) and Bottomonium(-like) states

    Full text link
    Hadron physics represents the study of strongly interacting matter in all its manifestations and the understanding of its properties and interactions. The interest on this field has been revitalized by the discovery of new light hadrons, charmonium- and bottomonium-like states. I review the most recent experimental results from different experiments.Comment: Presented at Lepton-Photon 2011, Mumbai, India; 21 pages, 18 figures; add more references; some correctio

    Non-Global Logarithms in Filtered Jet Algorithms

    Get PDF
    We analytically and numerically study the effect of perturbative gluons emission on the "Filtering analysis", which is part of a subjet analysis procedure proposed two years ago to possibly identify a low-mass Higgs boson decaying into b\bar{b} at the LHC. This leads us to examine the non-global structure of the resulting perturbative series in the leading single-log large-N_c approximation, including all-orders numerical results, simple analytical approximations to them and comments on the structure of their series expansion. We then use these results to semi-analytically optimize the parameters of the Filtering analysis so as to suppress as much as possible the effect of underlying event and pile-up on the Higgs mass peak reconstruction while keeping the major part of the perturbative radiation from the b\bar{b} dipole.Comment: 47 pages, 25 figures, 1 figure and a few comments added, version accepted for publication in JHE

    Lung Cancer in Pulmonary Fibrosis: Tales of Epithelial Cell Plasticity

    Get PDF
    Lung epithelial cells exhibit a high degree of plasticity. Alterations to lung epithelial cell function are critically involved in several chronic lung diseases such as pulmonary fibrosis. Pulmonary fibrosis is characterized by repetitive injury and subsequent impaired repair of epithelial cells, which leads to aberrant growth factor activation and fibroblast accumulation. Increased proliferation and hyper- and metaplasia of epithelial cells upon injury have also been observed in pulmonary fibrosis; this epithelial cell activation might represent the basis for lung cancer development. Indeed, several studies have provided histopathological evidence of an increased incidence of lung cancer in pulmonary fibrosis. The mechanisms involved in the development of cancer in pulmonary fibrosis, however, remain poorly understood. This review highlights recently uncovered molecular mechanisms shared between lung cancer and fibrosis, which extend the current evidence of a common trait of cancer and fibrosis, as provided by histopathological observations. Copyright (C) 2011 S. Karger AG, Base

    Interplay between Fermi gamma-ray lines and collider searches

    Get PDF
    We explore the interplay between lines in the gamma-ray spectrum and LHC searches involving missing energy and photons. As an example, we consider a singlet Dirac fermion dark matter with the mediator for Fermi gamma-ray line at 130 GeV. A new chiral or local U(1) symmetry makes weak-scale dark matter natural and provides the axion or Z 0 gauge boson as the mediator connecting between dark matter and electroweak gauge bosons. In these models, the mediator particle can be produced in association with a monophoton at colliders and it produces large missing energy through the decays into a DM pair or ZZ; Z with at least one Z decaying into a neutrino pair. We adopt the monophoton searches with large missing energy at the LHC and impose the bounds on the coupling and mass of the mediator field in the models. We show that the parameter space of the Z 0 mediation model is already strongly constrained by the LHC 8TeV data, whereas a certain region of the parameter space away from the resonance in axion-like mediator models are bounded. We foresee the monophoton bounds on the Z 0 and axion mediation models at the LHC 14 TeV

    Probing natural SUSY from stop pair production at the LHC

    Full text link
    We consider the natural supersymmetry scenario in the framework of the R-parity conserving minimal supersymmetric standard model (called natural MSSM) and examine the observability of stop pair production at the LHC. We first scan the parameters of this scenario under various experimental constraints, including the SM-like Higgs boson mass, the indirect limits from precision electroweak data and B-decays. Then in the allowed parameter space we study the stop pair production at the LHC followed by the stop decay into a top quark plus a lightest neutralino or into a bottom quark plus a chargino. From detailed Monte Carlo simulations of the signals and backgrounds, we find the two decay modes are complementary to each other in probing the stop pair production, and the LHC with s=14\sqrt{s}= 14 TeV and 100 fb1fb^{-1} luminosity is capable of discovering the stop predicted in natural MSSM up to 450 GeV. If no excess events were observed at the LHC, the 95% C.L. exclusion limits of the stop masses can reach around 537 GeV.Comment: 19 pages, 10 figures, version accepted by JHE
    corecore